Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 17(5): e0268255, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35536831

RESUMO

Citrus tristeza virus (CTV) is the most severe viral disease for citrus production. Many strains of CTV have been characterized and their symptomology widely varies, ranging from asymptomatic or mild infections to severe symptomology that results in substantial yield loss or host death. The capacity of the different CTV strains to affect the biochemistry of different citrus species has remained largely unstudied, despite that associated metabolomic shifts would be relevant toward symptom development. Thus, amino acid, sugar, phenolic, and terpenoid levels were assessed in leaves of healthy and CTV-infected grapefruit, lemon, mandarin, and two different sweet orange cultivars. Both mild [VT-negative (VT-)] and severe [VT-positive (VT+)] CTV genotype strains were utilized. When looking at overall totals of these metabolite classes, only amino acid levels were significantly increased by infection of citrus with severe CTV strains, relative to mild CTV strains or healthy plants. No significant trends of CTV infection on summed amounts of all sugar, phenolic, or terpenoid compounds were observed. However, individual compound levels were affected by CTV infections. Subsequent canonical discriminant analysis (CDA) that utilized profiles of individual amino acids, terpenoids, or phenolics successfully distinguished leaf samples to specific citrus varieties and identified infection status with good accuracy. Collectively, this study reveals biochemical patterns associated with severity of CTV infections that can potentially be utilized to help identify in-field CTV infections of economic relevance.


Assuntos
Citrus paradisi , Citrus sinensis , Citrus , Closterovirus , Aminoácidos , Citrus sinensis/genética , Closterovirus/genética , Doenças das Plantas/genética , Açúcares , Terpenos
2.
Plant Dis ; 106(12): 3091-3099, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35596249

RESUMO

Huanglongbing (HLB) is a destructive citrus disease that affects citrus production worldwide. 'Candidatus Liberibacter asiaticus' (CLas), a phloem-limited bacterium, is the associated causal agent of HLB. The current standard for detection of CLas is real-time quantitative polymerase chain reaction (qPCR) using either the CLas 16S rRNA gene or the ribonucleotide reductase (RNR) gene-specific primers/probe. qPCR requires well-equipped laboratories and trained personnel, which is not convenient for rapid field detection of CLas-infected trees. Recombinase polymerase amplification (RPA) assay is a fast, portable alternative to PCR-based diagnostic methods. In this study, an RPA assay was developed to detect CLas in crude citrus extracts utilizing isothermal amplification, without the need for DNA purification. Primers were designed to amplify a region of the CLas RNR gene, and a fluorescent labeled probe allowed for detection of the amplicon in real-time within 8 mins at 39°C. The assay was specific to CLas, and the sensitivity was comparable to qPCR, with a detection limit cycle threshold of 34. Additionally, the RPA assay was combined with a lateral flow device for a point-of-use assay that is field deployable. Both assays were 100% accurate in detecting CLas in fresh citrus crude extracts from leaf midribs and roots from five California strains of CLas tested in the Contained Research Facility in Davis, California. This assay will be important for distinguishing CLas-infected trees in California from those infected by other pathogens that cause similar disease symptoms and can help control HLB spread.


Assuntos
Citrus , Rhizobiaceae , Liberibacter/genética , Recombinases , RNA Ribossômico 16S/genética , Doenças das Plantas/microbiologia , Citrus/microbiologia , Primers do DNA/genética , Árvores
3.
BMC Genomics ; 22(1): 373, 2021 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-34022804

RESUMO

BACKGROUND: Spiroplasma citri comprises a bacterial complex that cause diseases in citrus, horseradish, carrot, sesame, and also infects a wide array of ornamental and weed species. S. citri is transmitted in a persistent propagative manner by the beet leafhopper, Neoaliturus tenellus in North America and Circulifer haematoceps in the Mediterranean region. Leafhopper transmission and the pathogen's wide host range serve as drivers of genetic diversity. This diversity was examined in silico by comparing the genome sequences of seven S. citri strains from the United States (BR12, CC-2, C5, C189, LB 319, BLH-13, and BLH-MB) collected from different hosts and times with other publicly available spiroplasmas. RESULTS: Phylogenetic analysis using 16S rRNA sequences from 39 spiroplasmas obtained from NCBI database showed that S. citri strains, along with S. kunkelii and S. phoeniceum, two other plant pathogenic spiroplasmas, formed a monophyletic group. To refine genetic relationships among S. citri strains, phylogenetic analyses with 863 core orthologous sequences were performed. Strains that clustered together were: CC-2 and C5; C189 and R8-A2; BR12, BLH-MB, BLH-13 and LB 319. Strain GII3-3X remained in a separate branch. Sequence rearrangements were observed among S. citri strains, predominantly in the center of the chromosome. One to nine plasmids were identified in the seven S. citri strains analyzed in this study. Plasmids were most abundant in strains isolated from the beet leafhopper, followed by strains from carrot, Chinese cabbage, horseradish, and citrus, respectively. All these S. citri strains contained one plasmid with high similarity to plasmid pSci6 from S. citri strain GII3-3X which is known to confer insect transmissibility. Additionally, 17 to 25 prophage-like elements were identified in these genomes, which may promote rearrangements and contribute to repetitive regions. CONCLUSIONS: The genome of seven S. citri strains were found to contain a single circularized chromosome, ranging from 1.58 Mbp to 1.74 Mbp and 1597-2232 protein-coding genes. These strains possessed a plasmid similar to pSci6 from the GII3-3X strain associated with leafhopper transmission. Prophage sequences found in the S. citri genomes may contribute to the extension of its host range. These findings increase our understanding of S. citri genetic diversity.


Assuntos
Hemípteros , Spiroplasma citri , Spiroplasma , Animais , Hemípteros/genética , América do Norte , Filogenia , RNA Ribossômico 16S/genética , Spiroplasma/genética , Spiroplasma citri/genética
4.
BMC Res Notes ; 13(1): 320, 2020 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-32620150

RESUMO

OBJECTIVES: Spiroplasma citri is a bacterium with a wide host range and is the causal agent of citrus stubborn and brittle root diseases of citrus and horseradish, respectively. S. citri is transmitted in a circulative, persistent manner by the beet leafhopper, Neoaliturus (Circulifer) tenellus (Baker), in North America. Five strains of S. citri were cultured from citrus, horseradish, and N. tenellus from different habitats and times. DNA from cultures were sequenced and genome assembled to expand the database to improve detection assays and better understand its genetics and evolution. DATA DESCRIPTION: The whole genome sequence of five strains of S. citri are described herein. The S. citri chromosome was circularized for all five strains and ranged from 1,576,550 to 1,742,208 bp with a G + C content of 25.4-25.6%. Characterization of extrachromosomal DNAs resulted in identification of one or two plasmids, with a G + C content of 23.3 to 27.6%, from plant hosts; and eight or nine plasmids, with a G + C content of 21.65 to 29.19%, from N. tenellus. Total genome size ranged from 1,611,714 to 1,832,173 bp from plants and 1,968,976 to 2,155,613 bp from the leafhopper. All sequence data has been deposited in DDBJ/ENA/GenBank under the accession numbers CP046368-CP046373 and CP047426-CP047446.


Assuntos
Genoma Bacteriano , Spiroplasma citri/genética , Animais , Armoracia/microbiologia , Composição de Bases , Citrus/microbiologia , DNA Bacteriano/química , Hemípteros/microbiologia , Insetos Vetores/microbiologia , Spiroplasma citri/isolamento & purificação , Sequenciamento Completo do Genoma
5.
Phytopathology ; 110(2): 254-256, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31502518

RESUMO

Spiroplasma citri is a bacterium that causes stubborn disease of citrus and infects other crops, ornamentals, and weeds. It is transmitted by leafhoppers in a circulative manner. Due to limited sequence data on S. citri, the bacterium was isolated from naturally infected Chinese cabbage grown on a farm in Fresno County, CA. DNA from S. citri CC-2 was extracted from a pure culture in LD8 and subjected to PacBio sequencing. Four contigs were obtained with a single circular chromosome of 1,709,192 bp and three plasmids of 40,210, 39,313, and 2,921 bp in size. The genome developed herein extends the sequence database of S. citri and is the first whole-genome sequence record of S. citri from California.


Assuntos
Genoma Bacteriano , Doenças das Plantas , Spiroplasma citri , California , Citrus/microbiologia , Bases de Dados Genéticas , Genoma Bacteriano/genética , Doenças das Plantas/microbiologia , Spiroplasma citri/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...